skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Danciger, Jeffrey"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 23, 2026
  2. We investigate representations of Coxeter groups into\mathrm{GL}(n,\mathbb{R})as geometric reflection groups which are convex cocompact in the projective space\mathbb{P}(\mathbb{R}^{n}). We characterize which Coxeter groups admit such representations, and we fully describe the corresponding spaces of convex cocompact representations as reflection groups, in terms of the associated Cartan matrices. The Coxeter groups that appear include all infinite word hyperbolic Coxeter groups; for such groups, the representations as reflection groups that we describe are exactly the projective Anosov ones. We also obtain a large class of nonhyperbolic Coxeter groups, thus providing many examples for the theory of nonhyperbolic convex cocompact subgroups in\mathbb{P}(\mathbb{R}^{n})developed by Danciger–Guéritaud–Kassel (2024). 
    more » « less
    Free, publicly-accessible full text available February 5, 2026
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. Properly discontinuous actions of a surface group by affine automorphisms of ℝ^d were shown to exist by Danciger-Gueritaud-Kassel. We show, however, that if the linear part of an affine surface group action is in the Hitchin component, then the action fails to be properly discontinuous. The key case is that of linear part in 𝖲𝖮(n,n−1), so that the affine action is by isometries of a flat pseudo-Riemannian metric on ℝ^d of signature (n,n−1). Here, the translational part determines a deformation of the linear part into 𝖯𝖲𝖮(n,n)-Hitchin representations and the crucial step is to show that such representations are not Anosov in 𝖯𝖲𝖫(2n,ℝ) with respect to the stabilizer of an n-plane. We also prove a negative curvature analogue of the main result, that the action of a surface group on the pseudo-Riemannian hyperbolic space of signature (n,n−1) by a 𝖯𝖲𝖮(n,n)-Hitchin representation fails to be properly discontinuous. 
    more » « less
  7. null (Ed.)